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Abstract Current researches on treatments for metabolic
diseases involve a class of biological receptors called
peroxisome proliferator-activated receptors (PPARs),
which control the metabolism of carbohydrates and
lipids. A subclass of these receptors, PPARδ, regulates
several metabolic processes, and the substances that
activate them are being studied as new drug candidates
for the treatment of diabetes mellitus and metabolic
syndrome. In this study, several PPARδ agonists with
experimental biological activity were selected for a
structural and chemical study. Electronic, stereochemical,
lipophilic and topological descriptors were calculated for
the selected compounds using various theoretical methods,
such as density functional theory (DFT). Fisher’s weight
and principal components analysis (PCA) methods were
employed to select the most relevant variables for this
study. The partial least squares (PLS) method was used to
construct the multivariate statistical model, and the best
model obtained had 4 PCs, q2=0.80 and r2=0.90,
indicating a good internal consistency. The prediction
residues calculated for the compounds in the test set had

low values, indicating the good predictive capability of
our PLS model. The model obtained in this study is
reliable and can be used to predict the biological activity
of new untested compounds. Docking studies have also
confirmed the importance of the molecular descriptors
selected for this system.

Keywords Diabetes mellitus . Docking studies . Drug
design .Metabolic syndrome .Molecular modeling .

PPARδ . Theoretical methods

Introduction

Diabetes mellitus (DM) and metabolic syndrome are two
diseases that express common symptoms and decrease
quality of life. DM is associated with the metabolism of
carbohydrates while metabolic syndrome is related to the
metabolism of lipids [1–7]. One of the biggest risk factors
for both DM and metabolic syndrome development is
insulin resistance and obesity, which occurs due to an
alteration in carbohydrate and lipid metabolism and can
lead to additional complications, such as atherosclerosis,
and hypertension [5–10].

A class of biological receptors called peroxisome
proliferator-activated receptors (PPARs) is involved in the
control of the metabolism of carbohydrates and lipids.
PPAR family has the isoform δ that, when activated,
stimulates the lipid metabolism, as well as decreases the
insulin resistance. Therefore, substances that activate this
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subtype of PPAR should be studied as future drug
candidates to treat several diseases, such as metabolic
syndrome [5, 11–20]. One strategy that can be used to
design new therapeutic agents is to employ molecular
modeling techniques. Structure-activity relationship and
quantitative structure-activity relationship studies have been
carried out successfully with the aim of constructing
multivariate statistical models that correlate chemical
properties and biological activities of distinct classes of
bioactive substances [21–27]. The main objective of this
work is to use theoretical, multivariate statistical and
docking methods to study the relationships between the
atomic and molecular properties and the biological activity
of a series of compounds that are potential drug candidates
for the treatment of DM type 2 and metabolic syndrome, as
well as understand the possible molecular basis responsible
for the biological activity presented by the compounds
studied.

Data set

From the compounds synthesized by Wickens et al. [28],
we have selected 35 molecules to constitute the training set.
Ten compounds were inserted into the test set (external
validation) regarding the structural diversity and the range
of biological property values, as is illustrated in Fig. 1.
Table 1 displays the chemical structures and the biological
activity values (EC50) for all the compounds studied. The
values of EC50 were measured under the same experimental
conditions [28] and converted to the corresponding pEC50

(-logEC50), which were used as dependent variables in the
multivariate analyses.

Geometry optimization

To perform all multivariate analyses, it is necessary to
obtain the electronic, lipophilic, stereochemical and topo-
logical properties of the selected compounds. We first
constructed the molecular structures of the compounds

using Gaussview [29]. To select the best theoretical method
to optimize these structures, we compared the RMS fit
errors between the optimized and crystallographic (PDB
code 3D5F [30]) geometries of the ligand L41 ({4-[3-(4-
acetyl-3-hydroxy-2-propylphenoxy) propoxy]phenoxy}ace-
tic acid). We also selected the most potent compound of the
data set (compound 17) and compared its optimized
geometries using AM1, PM3, B3LYP/6-31G* and
B3LYP/DGDZVP to the crystal structure of L41. All
calculations were performed using the molecular modeling
package Gaussian03 [31]. The results obtained are pre-
sented in Table 2 and Fig. 2.

From Table 2, we see that the RMS fit errors from
comparing the crystallographic structure of L41 to the
optimized structures of compounds L41 and 17 are smallest
for geometries obtained with B3LYP/6-31G* and B3LYP/
DGDZVP, respectively. The structures displayed in Fig. 2
indicate that there was a perfect superposition of the
phenoxy ring in both cases. However, the RMS fit errors
obtained from the comparison of the crystallographic
structure of L41 to the optimized structures of compound
17 are greater than those obtained by comparing the
crystallographic structure of L41 to the compound’s
optimized structures. This is because compound 17 has
different substituent groups than compound L41. Since the
method employing the functional B3LYP [32, 33] and
DGDZVP [34, 35] basis sets has yielded molecular
structures that are in good agreement with the crystallo-
graphic geometry of a ligand (L41), we used B3LYP/
DGDZVP to obtain the optimized structures of the other
compounds.

Calculation of atomic and molecular properties

After the geometry optimization, atomic and molecular
properties of all compounds were obtained. Electronic
properties were calculated using Gaussian03 and the same
method employed in the geometry optimization (B3LYP/
DGDZVP). Stereochemical and lipophilic properties were
calculated using the “QSAR” module in the molecular
package HyperChem [36]. Several topological indices were
also obtained using the software Dragon 2.1 [37]. Table 3
lists the electronic, stereochemical, lipophilic and topolog-
ical properties employed in this study and Fig. 3 displays
the numbering system we used.

Variable selection and multivariate statistical analyses

We initially calculated 1504 properties. To select the most
relevant ones for our analyses, we used Fisher’s weight
values (WF), which indicates the discriminating powers of
the variables, and the principal component analysis (PCA).
Variables that presented insignificant values of WF (WF<Fig. 1 Distribution of pEC50 values for training and test set
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Table 1 Chemical structures and EC50 values of the compounds studied [28]

Cpd General Structure R1 R2 X Y EC50 (nM) 

Training set 

1 

 

H - - - 27 

2 CH3 - - - 120 

3 CH2CH3 - - - 590 

4 OCH3 - - - 4400 

5 

 

 

- - - 3140 

6 

 

- - - 883 

7 

 

- - - 6480 

8 

 

4-OCH3 - - - 3 

9 3-OCH3 - - - 18 

10 4-t-Bua - - - 21 

11 4-i-Prb - - - 1 

12 3-F - - - 13 

13 4-CH3 - - - 4 

14 3-CN - - - 73 

15 4-Cl - - - 3 

16 

 

H - S N 11 

17 4-CH3 - S N 0.8 

18 3,4-OCH2O - S N 5 

19 4-OCH3 - S N 4 

20 3-OCH3 - S N 61 

21 4-F - S N 7 

22 2-F - S N 116 

23 4-Cl - S N 1.5 

24 3-OCH3 - S N 272 

25 4-OCF3 - S N 2 

26 4-Phc - N NCH3 28 

27 4-Etd - N NCH3 31 

28 4-Et - NCH3 N 347 

29 4-OCH3 - N NCH3 86 

30 4-OCH3 - NCH3 N 10000 

31 H - NCH3 N 10000 
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0.20) were discarded in our multivariate analyses, leaving
25 properties. Performing PCA on these 25 properties
narrowed the selection down to the final seven variables
used in our study (Table 3).

After the variable selection, we performed multivariate
statistical analyses to obtain a statistical model to
investigate the relationship between the atomic and
molecular properties and the biological activity of the
compounds under study. For this, we used the multivar-
iate statistical method called partial least squares (PLS),
which is implemented through the computational package
Pirouette [40]. We autoscaled the variable set to give each
of them the same importance. We selected the best model
from PLS based on statistical parameters such as the
values of PRESS (prediction residues error squares sum)
and SEV (standard error of validation) and the optimum
number of principal components (PCs). The quality of the
model was evaluated by the cross-validation (leave-one-
out) and calibration coefficients q2 and r2, respectively,

and by the residues of prediction obtained from external
validation (test set).

Docking analyses

Using the docking program Surflex, implemented in the
computational package Sybyl 8.1 [41], we have docked two
compounds of the series (the most active - 17 and the least
one - 30) using a crystallographic PPARδ structure (PDB
code 3GZ9 [42]). This protein structure was selected based
on the best resolution (2.00 Å) and due to the chemical
similarity of its ligand to ones studied in this work. The
docking studies were performed using the default parame-
ters related to the rigid protein and flexible ligand,
implemented in the program Surflex.

Results and discussion

The values of the seven properties studied (electronic,
stereochemical, lipophilic and topological ones), along with
the pEC50 values, are shown in Table 4 and the correlation
matrix of the descriptors selected is presented in Table 5.

Using the seven atomic and molecular properties
displayed in Table 4, we carried out PLS analyses. The
optimum number of PCs was four because the PLS model
with 4 PCs presented low values of PRESS and SEV and
high values of q2 and r2 (q2=0.80, r2 = 0.90), indicating
good internal consistency. Table 6 lists the statistical
parameters that were used to select the best PLS model.

32 

 

H Et - - 7 

33 4-CH3 Et - - 5 

34 4-Et Et - - 11 

35 H Pr - - 10 

Test set 

36 

 

H - - - 14 

37 4-Et - - - 3 

38 4-F - - - 7 

39 4-Ph - - - 6 

40 3-CH3 - - - 64 

41 4-CN - - - 35 

42 3-Cl - - - 13 

43 

 

3-F - S N 47 

44 3-CF3 - S N 30 

45 H - N NCH3 257 

a t-Bu=C(CH3)3;
b i-Pr=CH(CH3)2;

c Ph=C6H11;
d Et=CH2CH3

Table 1 (continued)

Table 2 RMS fit errors from comparing optimized geometries of
compounds 17 and L41 to the crystallographic structure of L41 (PDB
code: 3D5F)

Compound AM1 PM3 B3LYP/6-31G* B3LYP/DGDZVP

RMS fit error (Å)

17 1.4577 1.5129 1.4540 1.3076

L41 1.3502 1.3511 0.1255 0.1398
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From Table 6, we see that the best PLS model has good
statistical parameters. The PLS equation that was attained
after internal validation is:

pEC50 ¼ 0:2086ELUMO � 0:1979m� 0:4297V

þ 0:2496C9 � 0:2631logPþ 1:0419ATS7p

þ 0:2487AROM ð1Þ
Comparing our outcomes to those found by Giaginis et

al. [43], which studied PPARγ ligands, we can verify that
some molecular properties for PPARδ ligands studied in
this work, such as LUMO energy, dipole and log P, are also
important to PPARγ activation. This fact could be
explained due to the high similarity of aminoacid residues
in the active site of all PPAR isoforms [44]. Besides, our
study indicates that other effects (stereochemical and
topological) can influence the interaction between PPARδ
ligands and the biological receptor.

Using this model Eq. 1, we predicted the biological
activity (pEC50 values) of the compounds in the test set
(external validation) and the results are listed in Table 7. A
plot comparing the pEC50 values of the compounds in both
the training and test sets obtained experimentally with those
obtained with our model is shown in Fig. 4. There is good

agreement between the experimental and calculated values
for the compounds in the test set, indicating the reliability
of the PLS model. The calculated pEC50 values were within
0.61 log units of the experimental values. Combined with
the low residual values displayed in Table 7, we conclude
that the PLS model we generated is reliable and can be used
to accurately predict the biological activity of other
compounds within this structural class.

After the construction and validation (internal and
external) of the PLS model, we analyzed the chemical
significance of the seven variables selected and their
possible implications in the interaction between the
PPARδ ligands and the biological target. We expected
the variables to have good correlation with the biological
activity (pEC50) and thus indicate possible ligand-protein
interactions, as described by Xu et al. [45], which discuss
the most important interactions between a ligand and the
PPARδ receptor. Some important findings were found,
such as:

(1). The LUMO energy contributes positively to the
model. Because the energy of the LUMO (lowest
unoccupied molecular orbital) describes the electron-
accepting character of a substance, this property is
important to understand the charge transfer processes
that occur when a ligand interacts with the biological
receptor [46].

(2). Dipole moment has a positive contribution to the
model and ATS7p has the most positive contribution.

Table 3 Selected properties and their definitions

Property Type Definition

ELUMO

(a.u.)
Electronic Energy of the lowest unoccupied

molecular orbital

μ (D) Dipole moment

C9 (a.u.) Atomic charge at carbon 9, derived from
electrostatic potentials (ESP)

V (Å3) Stereochemical Volume

Log P Lipophilic Partition coeficient

ATS7p Topological Topological property related to atomic
polarizability [38]

AROM Aromaticity index [39]
Fig. 3 General structure and numbering system used in this study

Fig. 2 Superposition of the op-
timized molecular structure of
compound L41 with its crystal-
lographic structure and superpo-
sition of the optimized
molecular structure of com-
pound 17 with the crystallo-
graphic structure of L41
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Cpd ELUMO (a.u.) μ (D) C9 (a.u.) V (Å3) Log P ATS7p AROM pEC50

Training set

1 -0.0474 5.695 0.430 1120.49 3.03 0.431 0.995 7.57

2 -0.0445 3.304 0.412 1167.93 3.59 0.416 0.995 6.92

3 -0.0480 1.564 0.410 1201.65 3.98 0.403 0.995 6.23

4 -0.0532 3.443 0.445 1203.69 2.80 0.410 0.995 5.36

5 -0.0497 1.323 0.487 1153.45 3.42 0.416 0.994 5.50

6 -0.0488 3.414 0.415 1175.70 3.36 0.413 0.995 6.05

7 -0.0501 2.196 0.470 1202.51 3.79 0.410 0.995 5.19

8 -0.0436 1.550 0.400 1189.60 2.77 0.433 0.994 8.52

9 -0.0430 1.879 0.439 1185.08 2.77 0.423 0.996 7.74

10 -0.0453 2.999 0.447 1309.75 4.65 0.444 0.995 7.68

11 -0.0460 1.820 0.450 1278.50 4.22 0.440 0.993 9.00

12 -0.0581 1.450 0.414 1127.34 3.17 0.430 0.993 7.89

13 -0.0454 1.473 0.415 1172.66 3.49 0.430 0.995 8.40

14 -0.0731 4.617 0.442 1167.11 2.99 0.448 0.983 7.14

15 -0.0574 3.314 0.429 1156.29 3.54 0.449 0.995 8.52

16 -0.0588 1.577 0.404 1135.03 4.30 0.456 0.992 7.96

17 -0.0544 1.313 0.443 1142.56 4.76 0.467 0.992 9.10

18 -0.0574 1.601 0.531 1144.87 3.98 0.469 0.988 8.30

19 -0.0498 2.488 0.449 1166.24 4.04 0.469 0.992 8.40

20 -0.0615 3.542 0.463 1129.02 4.68 0.454 0.993 7.21

21 -0.0614 2.373 0.400 1144.87 4.44 0.455 0.991 8.15

22 -0.0639 3.261 0.476 1096.62 4.44 0.455 0.991 6.94

23 -0.0650 3.394 0.447 1134.89 4.82 0.475 0.992 8.82

24 -0.0593 1.624 0.558 1118.70 4.76 0.464 0.992 6.57

25 -0.0667 3.236 0.381 1240.49 5.98 0.467 0.993 8.70

26 -0.0452 4.366 0.420 1367.77 5.07 0.443 0.962 7.55

27 -0.0280 3.139 0.404 1269.50 5.14 0.437 0.954 7.51

28 -0.0282 3.868 0.419 1271.94 5.50 0.413 0.954 6.46

29 -0.0206 2.378 0.445 1240.18 3.13 0.430 0.959 7.07

30 -0.0206 3.141 0.408 1241.59 4.38 0.406 0.957 5.00

31 -0.0315 3.725 0.420 1164.80 4.64 0.401 0.955 5.00

32 -0.0491 1.516 0.448 1175.01 3.49 0.427 0.995 8.15

33 -0.0441 3.749 0.383 1224.74 3.96 0.426 0.995 8.30

34 -0.0455 1.618 0.457 1279.61 4.36 0.431 0.994 7.96

35 -0.0488 1.504 0.430 1221.79 3.89 0.427 0.995 8.00

Test set

36 -0.0479 1.737 0.448 1116.11 3.03 0.431 0.993 7.85

37 -0.0461 1.333 0.408 1214.93 3.89 0.435 0.995 8.52

38 -0.0515 2.451 0.399 1128.24 3.17 0.430 0.993 8.15

39 -0.0590 1.428 0.430 1332.45 4.71 0.442 0.994 8.22

40 -0.0529 1.803 0.362 1175.84 5.31 0.440 0.969 7.19

41 -0.0836 6.139 0.405 1175.54 2.99 0.442 0.981 7.46

42 -0.0590 2.132 0.426 1153.68 3.54 0.449 0.994 7.89

43 -0.0687 3.537 0.480 1095.96 4.44 0.455 0.991 7.33

44 -0.0735 4.708 0.473 1171.69 5.18 0.460 0.993 7.52

45 -0.0315 3.123 0.404 1162.36 4.28 0.426 0.952 6.59

Table 4 Selected electronic,
stereochemical, lipophilic and
topological descriptors and
pEC50 values for all compounds
studied (training and test sets)
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These two properties show the charge distribution of a
molecule and are affected by the presence of
hydrophilic interactions, which favor hydrogen bonds
and dipole-dipole interactions between the two inter-
acting species [47]. We see such interactions happen-
ing between the -COOH group of the ligand and the
main residues in the active site of the biological
receptor (His323, His449 and Tyr473) [45].

(3). The atomic charge of carbon 9 reflects the influence
of the substituent groups attached to it that stabilize
the ligand in the active site. This property contributes
positively to the model; so, high positive charge of
carbon 9 (i.e., negative substituent linked to carbon 9)
contributes to the increase of biological activity.

(4). Volume is directly related to spatial conformation.
Therefore, 3D interactions and the stabilization of the
ligand in the active site depend on the size and form
of the substance under study [47]. Volume has the
most negative influence to the PLS model obtained.
In this case, low values of volume can favor the
molecule to achieve hydrophilic cavity and interact
with important residues. Our compound dataset has
some molecules with low biological activity (such as
4 and 7, Table 1) and this can be explained due to
steric hindrances.

(5). Log P has a negative contribution to the model. The
lipophilic property (partition coefficient) describes the
capability of a compound to cross biological mem-

branes. This descriptor is very important, as it can
alter the pharmacokinetic properties of the com-
pounds studied and also indicates hydrophobic inter-
actions.

(6). AROM has a positive contribution to the model and
represents similar effects to log P. The aromaticity
indices are related to hydrophobic interactions and
indicate the presence of aromatic groups (benzene
rings and double bonds) in the compounds studied.
Hydrophobic interactions are important in stabilizing
the ligand in the active site. For example, we observe
hydrophobic interactions between Cys285 and
Leu469 and the double bonds of a crystallographic
ligand (eicosapentaenoic acid) [45].

Finally, we have decided to perform docking studies
using some PPARδ ligands of the data set in order to relate
to our QSAR analyses and to understand the possible
interactions between the compounds studied and the
biological receptor. The main ligand-receptor interactions
for two compounds of the data set (the most active (17) and
the least active one (30)) and the crystallographic ligand
(D32) are displayed in Fig. 5.

First, it is important to highlight that the performance of
the docking protocol was based on CScore analysis,
implemented in the Surflex program. This option takes into
account a consensus of the most common scoring functions
(GOLD, ChemScore, DOCK and PMF). So, the com-
pounds 17 and 30 had a total score of 8.57 and 8.07,
respectively, indicating the best ranking for the compound
17. From Figs. 5a and b, it is possible to observe that the
most active compound (17) has similar behavior to the
crystallographic ligand in the binding site. Moreover, the
least active compound (30) has the polar head and the
linker group located at the same position of the crystallo-
graphic ligand, but the hydrophobic tail of the compound
30 fulfills another side of the apolar cavity.

Table 5 Correlation matrix of the descriptors selected

ELUMO μ C9 V Log P ATS7p AROM

ELUMO 1.000 0.029 -0.253 0.521 -0.002 -0.611 -0.672

μ 1.000 -0.264 0.126 0.128 -0.058 -0.332

C9 1.000 -0.292 -0.036 0.300 0.173

V 1.000 0.315 -0.263 -0.433

Log P 1.000 0.371 -0.373

ATS7p 1.000 0.238

AROM 1.000

Table 6 Percentage of accumulated information, SEV, PRESS and
validation and calibration coefficients for the PLS model

PCs % accumulated information SEV PRESS q2 r2

1 24.37 0.97 32.93 0.57 0.67

2 46.57 0.87 26.41 0.68 0.83

3 62.36 0.79 21.78 0.75 0.88

4 75.05 0.75 19.76 0.80 0.90

5 78.59 0.77 20.61 0.80 0.90

6 92.80 0.78 21.33 0.80 0.90

7 100.00 0.77 20.91 0.80 0.90

Table 7 Experimental and calculated pEC50 values and residues for
the compounds in the test set

Compound Experimental pEC50 Predicted pEC50 Residual

36 7.85 7.31 0.54

37 8.52 8.39 0.13

38 8.15 7.71 0.44

39 8.22 8.44 -0.22

40 7.19 7.81 -0.62

41 7.46 6.94 0.52

42 7.89 8.35 -0.46

43 7.33 6.78 0.55

44 7.52 6.94 0.58

45 6.59 6.55 0.04
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Analyzing the polar interactions (residues in white and
blue, Figs. 5c and d) we can note that compound 17 is
better directed to polar residues His323, His449 and Tyr473
than compound 30 (the least active). Due to the nature of
some electrostatic interactions of the compound 17 with
aminoacids of the active site, we can relate them with some
electronic properties selected in the multivariate study, such
as dipole and ATS7p, which can be considered very
important to describe the biological activity presented by
the substances studied. Regarding the hydrophobic inter-
actions, it is possible to observe that the hydrophobic tail of
compound 17 is located at hydrophobic pocket (colored in
orange, Fig. 5b) while the hydrophobic one of compound

30 is not located at the same position, which could
disadvantage important interactions with hydrophobic
residues in the binding site. An explanation for this could
be due to the size of the compound 30, which would cause
a stereochemical hindrance and, consequently, decrease the
biological activity.

Conclusions

The PPARδ receptor is important in carbohydrate and lipid
metabolism, two processes that, when disrupted, lead to
diabetes mellitus and metabolic syndrome. The main

Fig. 4 Experimental versus cal-
culated pEC50 values for the
compounds studied (training and
test sets)

Fig. 5 (a) and (b) Comparison
between docking results and the
crystallographic ligand (gray).
Docking results for the com-
pounds (c) 17 (the most active,
colored in green) and (d) 30 (the
least active, colored in red).
Polar residues are colored in
white and blue, and hydropho-
bic ones are orange
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objective of this work was to study the quantitative structure-
activity relationships of a set containing some PPARδ ligands.
We obtained an extended set of electronic, stereochemical,
lipophilic and topological properties that were related to
biological activity. We used Fisher’s weight values and PCA
analyses to select the seven most relevant properties for our
study: energy of the LUMO, dipole moment, atomic charge at
carbon 9, partition coefficient, volume, atomic polarizability
and aromaticity index. Using the PLS technique, we con-
structed a robust statistical multivariate model to predict the
biological activity of novel compounds. From the statistical
parameters obtained (q2=0.80 and r2=0.90), we concluded
that our PLS model has good internal consistency. The
external validation (compound test set) presented low
residual values, indicating that the PLS model is highly
reliable. In summary, this study provides insights on the
possible effects (electronic, stereochemical, lipophilic and
topological) involved in the interaction between the com-
pounds studied and the PPARδ receptor, and these findings
should be useful for the design of new structurally related
PPARδ ligands having improved biological activity.
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